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Abstract

The heat transfer phenomena of the unsteady laminar forced convection in parallel plate channels with wall conduction effects are still
not very well understood. An inverse algorithm based on the conjugate gradient method is proposed to estimate the boundary conditions
of these problems, and the minimization of object function is used to reduce the estimated error. The estimation of applied heat flux is
found to be highly dependent of temperature sensor location and uncertainty, plate thickness, and heating way. The results show that the
predicted boundary conditions by the present inverse method are consistent with the initially specified ones.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In the inverse heat conduction problems, the surface
conditions or the thermal properties of a material are esti-
mated by utilizing the temperature measurements within
the medium. These problems have received much attention
and numerous papers have been devoted to this topic of
research. Inverse radiation problems have also been inves-
tigated extensively. They are concerned with the determina-
tion of the radiative properties or the internal temperature
profile of a medium from the measured radiation data. The
inverse problems are known as ill-posed, hence the estima-
tion is very sensitive to the measurement errors of the input
data. To overcome the instability of the inverse problem,
different methods have been developed. Several texts are
related to this topic [1–4].

Moutsoglou [5] investigated the steady-state inverse
forced convection problem between parallel flat plates.
The wall heat flux of the top wall was estimated from mea-
sured temperature data at the bottom wall using the
straight inversion and the whole domain regularization
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schemes. Colaco and Orlande [6] investigated the inverse
force convection problem to predict two boundary heat
fluxes in irregularly shaped channels. Huang and Ozisik
[7] determined the spacewise variation of the wall heat flux
for laminar flow in a parallel plate duct from temperature
measurements inside the flow at several different locations
along the flow. Liu and Ozisik [8] estimated the timewise
variation of the wall heat flux for transient turbulent forced
convection inside parallel plate ducts. The conjugate gradi-
ent method with an adjoint equation was adopted to solve
the problem. Raghunath [9], Bokar and Ozisik [10], and
Liu and Ozisik [11] considered the inverse convection prob-
lem of determining the inlet temperature of a thermally
developing hydrodynamically developed laminar flow
between parallel plates from temperature measurements
taken downstream of the entrance. Machado and Orlande
[12] applied the conjugate gradient method with an adjoint
equation to estimate the timewise and spacewise variation
of the wall heat flux in laminar forced convection. Park
and Lee [13] employed the Karhunen–Loeve Galerkin
procedure to solve the inverse problem of determining
the space-dependent wall heat flux for laminar flow inside
a duct from the temperature measurement within the
flow. Fic [14] studied the steady-state inverse problem to
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Nomenclature

A dimensionless thermal diffusivity
b channel width
d direction of descent
f the estimated result with measurement errors
f0 the exact result
J objective function
K dimensionless thermal conductivity
k thermal conductivity
M the number of the measured data in the X direc-

tion
N the number of the measured data in the s direc-

tion
nt the number of the temporal steps
Pe Pelect number
Q dimensionless wall heat flux
q wall heat flux
qref reference heat flux
Re Reynolds number
T temperature
T0 initial temperature
t time
U dimensionless velocity
u0 inlet velocity
u velocity
�u mean velocity
X, Y dimensionless coordinates

x, y coordinates
Y1 Y coordinate of the sensors
Z measured dimensionless temperature data

Greek symbols

a thermal diffusivity
b step size
d plate thickness
e the absolute average error
c conjugate coefficient
u specified positive number
k dimensionless plate thickness
m kinematic viscosity
h dimensionless temperature
r standard deviation
s dimensionless time
n dimensionless axial coordinate
f random variable

Superscripts

p pth iteration

Subscripts

f fluid
w wall
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estimate the boundary velocity. Recently, the present
authors considered the estimation of the space and time
dependent wall heat flux for unsteady forced convection
in a parallel plate duct [15,16] or annular duct [17,18].

It is noted from the paper review cited above, despite its
practical importance, that studies of inverse problem of
unsteady forced convection in parallel channels with wall
conduction effects has not received sufficient attention. This
motivates the present investigation. In present work, an
attempt is made to examine the estimation of the space
and time dependent wall heat flux for unsteady laminar
conjugated forced convection between parallel flat plates
from the temperature measurements taken at the interface
between the fluid and the wall.
Fig. 1. Geometry and coordinates.
2. Analysis

2.1. Direct problem

Consider unsteady laminar forced convection heat trans-
fer in a parallel plate duct with channel width b and plate
thickness d. The flow enters the channel with a fully-devel-
oped velocity distribution u(y) and a constant temperature
T0. Initially, the duct walls are kept thermally insulated.
At time t = 0, the thermal condition of the upper wall at
y = b + d is suddenly changed and is subjected to wall heat-
ing condition with a function of position x and time t. The
flow is assumed to have constant properties and the buoy-
ancy term is neglected. It is intended to provide a first step
toward future work, which these effects will be considered.
Fig. 1 describes the geometry and coordinates. By introduc-
ing the following dimensionless quantities

X ¼ x
bPe

; Y ¼ y
b
; s ¼ af t

b2
; h ¼ kðT � T 0Þ

bqref

Pe ¼ �ub
af

; U ¼ u
�u
; Q ¼ q

qref

; U ¼ 3

2
½1� ð2Y � 1Þ2�

K ¼ kw

kf

; k ¼ d
b
; A ¼ aw

af

; ð1Þ
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where kw and kf is the thermal conductivity of the plate and
the fluid, respectively, aw and af is the thermal diffusivity of
the plate and fluid, separately, T is the temperature, q is the
wall heat flux, qref is the reference heat flux, and �u is the
mean velocity. In this paper, the heat transfer to the wall
is assumed positive.

The governing energy conservation equation based on
the dimensionless form inside the fluid and the plate for
the problem are given by

Fluid
ohf

os
þ U

ohf

oX
¼ o

2hf

oY 2
; ð2aÞ

Plate
ohw

os
¼ A

o2hw

oY 2
ð2bÞ

with the initial condition and the boundary conditions

hfðX ; Y ; 0Þ ¼ hwðX ; Y ; 0Þ ¼ 0; ð2cÞ
hfð0; Y ; sÞ ¼ 0; ð2dÞ
ohwðX ;�k; sÞ

oY
¼ 0; ð2eÞ

K
ohwðX ; 0; sÞ

oY
¼ ohfðX ; 0; sÞ

oY
; ð2fÞ

K
ohwðX ; 1; sÞ

oY
¼ ohfðX ; 1; sÞ

oY
; ð2gÞ

K
ohwðX ; 1þ k; sÞ

oY
¼ QðX ; sÞ: ð2hÞ

The direct problem can be solved to obtain the dimen-
sionless temperature field. A fully implicit numerical
scheme in which the x-direction convection term is approx-
imated by the upstream difference, the y-direction diffusion
term by the central difference and the unsteady term by the
backward difference is employed to transform the govern-
ing equations into finite difference equations. The detail
descriptions about the numerical method are described in
[19]. This system of equations forms a tridiagonal matrix
which can be solved by the Thomas Algorithm [20].
2.2. Inverse problem

In the direct problem, the velocity distribution, the ini-
tial condition, and the boundary conditions are given to
determine the temperature distribution in the flow field
and the plate. In the inverse problem, the temperature data
are assumed to be measured inside the flow or at the inter-
face between fluid and wall. The dimensionless heat flux at
the upper wall, QðX ; sÞ, is recovered by using the measured
data. The estimation of the wall heat flux from the knowl-
edge of the measured temperature data can be constructed
as a problem of minimization of the objective function

J ¼
XM

i¼1

XN

k¼1

ðhf ;i;k � Zi;kÞ2; ð3Þ

where hf ;i;k ¼ hfðX i; Y 1; skÞ is the calculated dimensionless
temperature for an estimated QðX ; sÞ, Zi;k ¼ ZðX i; Y 1; skÞ
is the measured dimensionless temperature. If Y1 = 0, the
measurements are taken at the lower interface between
the fluid and the wall; if 0 < Y 1 < 1, the measurements
are taken inside the fluid; if Y1 = 1, the measurements are
taken at the upper interface between the fluid and the wall.
M and N are the numbers of the measured points in the X

and s directions, respectively.
In this paper, the conjugate gradient method [21] is

employed to determine the unknown wall heat flux
QðX ; sÞ by minimizing the objective function, J. The itera-
tive process is

Qpþ1
m;n ¼ Qp

m;n � bpdp
m;n; ð4Þ

where Qm;n ¼ QðX m; snÞ, bp is the step size, dp
m;n is the direc-

tion of descent which is determined from

dp
m;n ¼

oJ
oQm;n

 !p

þ cpdp�1
m;n ð5Þ

and the conjugate coefficient cp is computed from

cp ¼
PM

m¼1

PN
n¼1

oJ
oQm;n

� �ph i2

PM
m¼1

PN
n¼1

oJ
oQm;n

� �p�1
� �2

with c0 ¼ 0: ð6Þ

Here, oJ
oQm;n

is the gradient of the objective function. The step
size is determined from

bp ¼
PM

i¼1

PN
k¼1 hp

f ;i;k � Zi;k

� �PM
m¼1

PN
n¼1

ohf ;i;k

oQm;n

� �p
dp

m;nPM
i¼1

PN
k¼1

PM
m¼1

PN
n¼1

ohf ;i;k

oQm;n

� �p
dp

m;n

h i2
; ð7Þ

where
ohf ;i;k

oQm;n
is the sensitivity coefficient. To calculate the sen-

sitivity coefficient, the direct problem is differentiated with
respect to Qm;n to obtain the sensitivity problem, i.e.,

o

os
ohf

oQm;n

 !
þ U

o

oX
ohf

oQm;n

 !
¼ o2

oY 2

ohf

oQm;n

 !
; ð8aÞ

o

os
ohw

oQm;n

 !
¼ A

o
2

oY 2

ohw

oQm;n

 !
; ð8bÞ

ohfðX ; Y ; 0Þ
oQm;n

¼ ohwðX ; Y ; 0Þ
oQm;n

¼ 0; ð8cÞ

ohfð0; Y ; sÞ
oQm;n

¼ 0; ð8dÞ

o

oY
ohwðX ;�k; sÞ

oQm;n

 !
¼ 0; ð8eÞ

K
o

oY
ohwðX ; 0; sÞ

oQm;n

 !
¼ o

oY
ohfðX ; 0; sÞ

oQm;n

 !
; ð8fÞ

K
o

oY
ohwðX ; 1; sÞ

oQm;n

 !
¼ o

oY
ohfðX ; 1; sÞ

oQm;n

 !
; ð8gÞ

K
o

oY
ohwðX ; 1þ k; sÞ

oQm;n

 !
¼ ûðX � X m; s� snÞ ð8hÞ
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for m ¼ 1; 2; . . . ;M ; n ¼ 1; 2; . . . ;N , where

ûðX � X m; s� snÞ ¼
1 if X ¼ X m; s ¼ sn;

0 otherwise:

�
ð8fÞ

The gradient of the objective function, oJ
oQm;n

, is deter-
mined by differentiating Eq. (3) with respect to Qm;n to
obtain

oJ
oQm;n

¼ 2
XM

i¼1

XN

k¼1

ðhi;k � Zi;kÞ
ohf ;i;k

oQm;n

: ð9Þ

If the problem contains no measurement errors, the
condition

JðQp
m;nÞ < u; ð10Þ

can be used for terminating the iterative process, where u is
a small specified positive number. However, the measured
temperature data contain measurement errors. Following
the computational experience, we use the discrepancy prin-
ciple [22]

JðQp
m;nÞ < MNr2 ð11Þ

as the stopping criterion, where r is the standard deviation
of the measurement errors.

The computational procedure for the solution of the
inverse convection problem is summarized as follows:

Step 1: Solve the sensitivity problem to calculate the sen-
sitivity coefficient

ohf ;i;k

oQm;n
. Step 2: Pick an initial guess Q0

m;n. Set

p ¼ 0. Step 3: Solve the direct problem to compute hf ;i;k.
Step 4: Calculate the objective function. Terminate the iter-
ation process if the specified stopping criterion is satisfied.
Otherwise go to Step 5. Step 5: Knowing

ohf ;i;k

oQm;n
, hf ;i;k, and

Zi;k, compute the gradient of the objective function oJ
oQm;n

.
Step 6: Knowing oJ

oQm;n
, compute cp and dp

m;n. Step 7: Know-

ing
ohf ;i;k

oQm;n
, hf ;i;k, Zi;k, and dp

m;n, compute bp. Step 8: Knowing

bp and dp
m;n, compute Qpþ1

m;n . Set p ¼ p þ 1 and go to Step 3.
In this paper, the initial guess is assumed as zero.

3. Results and discussion

To demonstrate the accuracy of the proposed method
for the estimation of the upper wall heat flux from the sim-
ulated measured temperature data, the effects of the mea-
surement error, the sensor location, and the plate
thickness on the results of the inverse analysis are investi-
gated. In the present study, three kinds of boundaries
(i.e., the interface between the plate and the fluid, the quan-
tity of the heat flux entering the top plate surface, and the
adiabatic boundary in the bottom plate) are applied on the
parallel plate channel as shown in Fig. 1.

The measured temperature data, Z, are simulated by
adding random errors to the exact temperature, h, com-
puted from the solution of the direct problem

Z ¼ hþ rf; ð12Þ
where r is the standard deviation of the measurement data,
f is a random variable of normal distribution with zero
mean and unit standard deviation. The value of f is calcu-
lated by the IMSL subroutine DRNNOR [23] and chosen
over the range �2:576 < f < 2:576, which represent the
99% confidence bound for the measured temperature.

In this work, the unknown wall heat fluxes are assumed
to be three different kinds of function to examine the accu-
racy of the estimated results, separately. These wall heat
fluxes are listed as below

Case 1 : QðsÞ ¼ 20s; s 6 0:5; ð13aÞ
QðsÞ ¼ 20ð1� sÞ; s > 0:5; ð13bÞ

Case 2 : QðsÞ ¼ 20 sinðpsÞ; ð13cÞ
Case 3 : QðX ; sÞ ¼ 20X sinðpsÞ: ð13dÞ

The heat fluxes of cases 1 and 2 are the time dependent
triangular and sinusoidal functions, separately. While, the
case 3 is the space and time dependent wall heat flux. In
this work, the inverse solutions for the temperature mea-
surements taken inside the fluid or at the interface between
the fluid and the wall are investigated. Additionally, the
accuracy of the estimated heat fluxes are discussed with dif-
ferent plate thickness, measurement errors and sensor loca-
tions. The dimensionless thickness of the plate, k, is
assumed as 0.0, 0.05, 0.1, and 0.2, respectively. In addition,
forty-one equally spaced measurements are taken both in
0 6 X 6 1 and 0 6 s 6 1 for all the cases considered. The
data are used as input to reconstruct the unknown
wall heat flux in the inverse problem. Typical properties
are applied as kw ¼ 17:0 W/mK, aw ¼ 4:4� 10�6 m2/s
(stainless steel); and kf ¼ 0:6 W/mK, af ¼ 1:5� 10�7 m2/s
(water). It is initially at an uniform temperature T 0 ¼ 0 �C.

To investigate the deviation of the estimated results
from the error-free solution, the absolute average errors
for the estimated solutions are defined as follows

e ¼ 1

nt

Xnt

j¼1

jf � f0j; ð14Þ

where the f is the estimated result with measurement errors
and the f0 is the exact result. nt is the number of the tem-
poral steps. It is clear that a smaller value of e indicates a
better estimation and vice versa.

Effects of wall thickness of channel plate on the pre-
dicted wall heat fluxes are presented in Fig. 2. In this figure,
the wall heat flux of case 1 is applied on the top plate.
Besides, the sensor location is selected to be Y1 = 0.9 and
the measurement error, r, is 0:03 or 0:06. These profiles
of the estimated heat flux are compared to the exact heat
flux in order to investigate the deviation between the esti-
mated and exact results. It is clear from Fig. 2 that the esti-
mated wall heat flux coincides with the exact input data,
i.e., r = 0.0. In addition, the accuracy of the inverse analy-
sis is also good for the simulated experimental data con-
taining errors of standard deviation r = 0.03 and
r = 0.06 at the dimensionless plate thickness, k = 0.2.
The absolute average errors of the estimated dimensionless
heat flux are, respectively, to be appropriately 0.071 and
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Fig. 2. Estimation of the wall heat flux by inverse analysis for wall heating condition of case 1 under different wall thickness. (a) k = 0.0; (b) k = 0.05; (c)
k = 0.1 and (d) k = 0.2.
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0.098 for r = 0.03 and r = 0.06. A close examination of
Fig. 2a–d discloses that the deviations between the esti-
mated and exact results are slightly affected by the plate
thickness, k.

To illustrate the effects of measurement error and wall
thickness on the absolute average error, Fig. 3 presents
the distributions of the absolute average errors under var-
ious conditions which the r ranges from 0.0 to 0.09 and the
k is 0.0, 0.05, 0.1 and 0.2, separately. In general, large mea-
suring errors make the estimated results to diverge from the
error-free solutions. It is clear in Fig. 3 that the absolute
average error decreases with a decrease in the measurement
error. Additionally, the absolute average error increases
slightly with the dimensionless plate thickness. From the
results mentioned above, it can be concluded that the pro-
posed method is accurate and stable to estimate the tran-
sient heat flux in the conjugated forced convection
problem. For the tabulated forms allow the facts to be read
clearly, the absolute average errors of the estimated results
in Fig. 3 are shown in Table 1. It is noted in Table 1 that
the absolute average errors are relatively amplified when
the r is increased from 0.03 to 0.06, compared to that when
r is changed from 0.06 to 0.09. It is also found that the
more inaccurate estimated results are noted for the channel
with a thicker wall.
The sensor location in the y-direction is an important
parameter affecting the estimated results in the inverse
problem. To examine the effects of the sensor location on
the estimated wall heat flux, Fig. 4 shows the estimated
and exact results at different sensor locations Y1 (= 0.2,
0.5, and 0.8) for the condition of r = 0.01 and k = 0.2. A
careful inspection of Fig. 4 reveals that the deviations
between the estimated and exact results become significant
when the Y1 is decreased. This means that the error of the
estimated heat flux is larger as the sensor location is more
far from the top plate. This is in agreement with the general
concept in the inverse analysis that the more far away the
unknown wall heat flux the sensors are, the more inaccu-
rate the estimation is. In addition, the absolute average
error is about 0.137 as Y1 = 0.0, r = 0.09 and k = 0.2.
The corresponding relative error is about 1.37%, where
the relative error is defined as the absolute average error
divided by the maximum wall heat flux. This confirms that
in the present study, the proposed method is excellent even
the estimated conditions are strict.

According to the description of Fig. 4, the relationship
among the absolute average error, the measurement error
and the sensor location is also interesting in the inverse
problem. Fig. 5 presents the distributions of the absolute
average error for various conditions of the absolute
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Fig. 3. The contours of the absolute average error of the estimated heat flux for different measurement errors and plate thickness for wall heating
condition of case 1.

Table 1
The absolute average errors at different r and k for wall heating condition
of case 1

r = 0.03 r = 0.06 r = 0.09

k = 0.0 0.061 0.086 0.109
k = 0.05 0.066 0.093 0.108
k = 0.1 0.069 0.099 0.107
k = 0.2 0.071 0.098 0.137
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Fig. 4. Estimation of the wall heat flux by inverse analysis for wall heating
condition of case 1 (r = 0.01, k = 0.2).
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estimated heat flux for wall heating condition of case 1 (r = 0.01, k = 0.0).
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average error, the measurement error and the sensor loca-
tion. It is clearly observed from Fig. 5 that the absolute
average error is rapidly reduced when Y1 is raised from
0.2 to 0.6. But, the absolute average error does not decay
with an increase in Y1 when Y1 is closer to the top plate
(Y1 > 0.8). In addition, the absolute average error is about
0.175, even the sensor location is located at Y1 = 0.0 with
measurement error r being 0.09. In general, despite the
value of r, a better estimation appears when the sensor
location is closer to the unknown wall heat flux boundary.
Namely, an accurate value of estimated heat flux could
result either from a low value of the measurement error,
which would indicate a better convergence in the present
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proposed method, or from a sensor location nearer the heat
flux boundary. Moreover, we notice that the estimated
result is more accurate as the plate is thinner regardless
of r and Y1.

To further test the applicability of the proposed method,
the same measured conditions as previous wall heat flux
conditions (case 1) are adopted to estimate the unknown
wall heat flux with cases 2 and 3. Therefore, the applied
wall heat flux is changed to be case 2. The effects of the
plate thickness, the measurement error and the sensor loca-
tion are investigated again. This clarifies that the proposed
method is suitable to deal with the different forms of wall
heat flux. The estimated heat fluxes resulted from the differ-
ent measurement error and plate thickness are shown in
Fig. 6a–d and compared with the exact heat flux. Overall
inspection of Fig. 6a–d and the comparison of Figs. 2
and 6 disclose that the similar trend is found. The accurate
estimated result is noted for a case with a small measure-
ment error.

The contours of the absolute average error related to the
measurement error, the dimensionless plate thickness and
the sensor location are presented in Figs. 7 and 8. To illus-
trate the absolute average errors are presented in Fig. 7 at
different measurement error and dimensionless plate thick-
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Fig. 6. Estimation of the wall heat flux by inverse analysis for wall heating con
k = 0.1 and (d) k = 0.2 (Y1 = 0).
ness. In Fig. 7, as expected, the accuracy of the estimation
is much better for the cases with lower measurement error
and thinner wall thickness. The effects of the sensor loca-
tion on the accuracy for wall heat condition of case 2 are
presented in Fig. 8. It is observed from Fig. 8 that the effect
of the sensor location has the same trend with the wall
heating condition of case 1 (see Fig. 5). When the measure-
ments are inside the fluid, i.e., Y1 = 0.9, the agreement
between the estimated and the exact values of the wall heat
flux is good as the case 1. The result is also satisfactory
when the measured data are taken at the lower wall, i.e.,
Y1 = 0. However, from the experimental point of view, it
is desirable to avoid sensors within the fluid which will dis-
turb the flow field and introduce errors.

Finally, the wall heating condition of case 3 which is a
function of space (X) and time (s) is tested. Fig. 9 presents
the contours of the average absolute error. It is found in
Fig. 9 that like the other wall heating conditions, the effects
of the measurement error and plate thickness on the
absolute average error is similar. Therefore, it can be con-
cluded that the accuracy of the estimated result is domi-
nated by the measurement error. While the influences of
wall thickness or unknown wall heating conditions on the
accuracy of the estimated result are slightly. It is found in
Exact Result 
σ = 0.03
σ = 0.06

0.0

5.0

10.0

15.0

20.0

25.0

Q

0.0

5.0

10.0

15.0

20.0

25.0

0.0 0.2 0.4 0.6 0.8 1.0

Exact Result 
σ = 0.03
σ = 0.06

Q

τ

0.0 0.2 0.4 0.6 0.8 1.0
τ

dition of case 2 under different wall thickness. (a) k = 0.0; (b) k = 0.05; (c)
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Fig. 7. The contours of absolute average error of the estimated heat flux for different measurement errors and plate thickness for wall heating condition of
case 2.
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estimated heat flux for wall heating condition of case 2 (r = 0.01, k = 0.0).
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the separate numerical runs that the absolute average error
is 0.137, 0.185 and 0.171 at r = 0.09 and k = 0.2 for wall
heating conditions of cases 1–3 separately. The correspond-
ing relative errors are about 1.37%, 0.93%, and 0.85% as
the error of the measured temperature is about 0.5 �C.

It is also interesting to investigate the effect of the sensor
locations on the estimated results. Fig. 10 shows the esti-
mated heat fluxes at X = 0.3, 0.6, 0.9 under different sensor
locations (Y1 = 0.2, 0.5, and 0.8) for wall heating condi-
tions of case 3. A careful examination of Fig. 10 indicates
that a larger deviation between the estimated and exact
results is noted for a larger X (= 0.9). Besides, the value
of the estimated result increases with an increase in the
location X. The reason is that the heat flux is dependent
on X and accumulates its value as X increases. The effects
of sensor location Y1 can be found in this figure. Like
Fig. 4, the sensor location is an important parameter that
influences the estimation of the heat flux.

The effects of sensor locations on the absolute average
errors under different measurement error and wall thick-
ness are presented in Fig. 11. Like the results in wall heat-
ing conditions of cases 1 and 2 (Figs. 5 and 8), the
estimated heat fluxes are more accurate with sensor loca-
tion being closer to the top boundary, with the thinner wall
or within the thermal boundary layer. The absolute average
errors in Fig. 11 are tabulated in Table 2. As is evident
from Table 2, the case of lower sensor location or the
thicker wall is less accurate than the case of upper sensor
location or the thinner wall. For examples, the values of
absolute average error at k = 0.2 and r = 0.09 are 2.34,
1.99, 0.99, and 0.91 when Y1 = 0.0, 0.3, 0.6, and 0.9, respec-
tively. In addition, we observe that the estimated heat
fluxes are extremely accurate at k = 0.0, 0.2 and r = 0.0.
These results prove that this present inverse algorithm is
reliable in advance. In addition, we found that the reduced
ratio (51%) of the variation of the absolute average errors
is exhibited as Y1 is increased from 0.2 to 0.6, where the
reduced ratio is defined as jeY 1¼0:02 � eY 1¼0:06j=eY 1¼0:06. The
results show that the values of absolute average error
decrease apparently as the sensor location is close to the
unknown heat flux boundary for all kinds of wall thickness
in spite of the form of heat flux. The above phenomena
illustrate the difficulty of the conjugated forced convection
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Fig. 11. Effects of sensor locations on the absolute average errors of the
estimated heat flux for unknown wall heating condition of case 3.

Table 2
The absolute average errors at different r and k for wall heating condition of case 3

Y1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k = 0.2 r = 0.0 0.013 0.01 0.006 0.003 0.0 0.0 0.0 0.0 0.0 0.0
r = 0.03 1.566 1.482 1.361 1.199 0.97 0.698 0.652 0.474 0.46 0.498
r = 0.09 2.341 2.275 2.162 1.988 1.743 1.443 0.986 0.856 0.841 0.91

k = 0.0 r = 0.0 0.007 0.006 0.004 0.001 0.0 0.0 0.0 0.0 0.0 0.0
r = 0.03 1.369 1.358 1.305 1.135 0.935 0.705 0.67 0.563 0.607 0.546
r = 0.09 2.138 2.12 2.034 1.856 1.606 1.310 1.036 0.847 0.827 0.888
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problem clearly when the measurement error, the sensor
location and the plate thickness are considered in the
inverse analysis.

In this section, the considerations of the different heat
flux functions demonstrate the validity of the proposed
method. In addition, the larger deviations are appeared
when the measurement error is larger. In this paper, lots
of cases which include the different plate thickness, the var-
iation of the sensor location, and the different measurement
error are exhibited to demonstrate the reliability of this
proposed method. Therefore, the proposed method is able
to deal with the inverse conjugated forced convection prob-
lem accurately.

4. Conclusions

The estimation of the space and time dependent wall
heat flux for unsteady conjugated forced convection
between parallel flat plates has been considered. The conju-
gate gradient method is applied to solve the problem. Var-
ious types of wall heat fluxes are used to test the accuracy
of the method. The inverse solutions are satisfactory for
both exact and noisy data. As expected, the results also
show that the more far away the unknown wall heat flux
the sensors are, the more inaccurate the estimation is. In
addition, the more accurate estimated results are appeared
in the thinner wall condition in spite of any kinds of heat
flux.
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